Binary superposed quantum decision diagrams

نویسنده

  • David Rosenbaum
چکیده

Binary Superposed Decision Diagrams (BSQDDs) are a new type of quantum decision diagram that can be used for representing arbitrary quantum superpositions. One major advantage of BSQDDs is that they are dependent on the types of gates used in synthesis and a BSQDD can be used to efficiently generate a quantum array that will initialize the quantum superposition that the BSQDD represents. Transformation rules for BSQDDs allow BSQDDs to be reduced into simpler BSQDDs that represent the same quantum superposition. Canonical forms exist for a broad class of BSQDDs. This allows BSQDDs to be used for synthesizing quantum arrays that are capable of initializing arbitrary quantum superpositions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Ordered Binary Decision Diagrams with Repeated Tests

Quantum branching programs (quantum binary decision diagrams, respectively) are a convenient tool for examining quantum computations using only a logarithmic amount of space. Recently several types of restricted quantum branching programs have been considered, e. g. read–once quantum branching programs. This paper considers quantum ordered binary decision diagrams (QOBDDs) and answers the quest...

متن کامل

Width Hierarchies for Quantum and Classical Ordered Binary Decision Diagrams with Repeated Test

We consider quantum, nondterministic and probabilistic versions of known computational model Ordered Read-k-times Branching Programs or Ordered Binary Decision Diagrams with repeated test (kQOBDD, k-NOBDD and k-POBDD). We show width hierarchy for complexity classes of Boolean function computed by these models and discuss relation between different variants of k-OBDD.

متن کامل

On Complexity of Quantum Branching Programs Computing Equality-like Boolean Functions

We consider Generalized Equality, the Hidden Subgroup, and related problems in the context of quantum Ordered Binary Decision Diagrams. For the decision versions of considered problems we show polynomial upper bounds in terms of quantum OBDD width. We apply a new modification of the fingerprinting technique and present the algorithms in circuit notation. Our algorithms require at most logarithm...

متن کامل

Stronger Lower Bounds on Quantum OBDD for the Hidden Subgroup Problem

We consider the Hidden Subgroup in the context of quantum Ordered Binary Decision Diagrams. We show several lower bounds for this function. In this paper we also consider a slightly more general definition of the hidden subgroup problem (in contrast to that in [KH10]). It turns out that in this case the problem is intractable for the quantum OBDD. We prove exponential lower bounds for this func...

متن کامل

QMDD and Spectral Transformation of Binary and Multiple-Valued Functions*

The use of decision diagrams (DD) for the computation and representation of binary function spectra has been well studied [2,3,5]. Computations and representation of spectra for multiplevalued logic (MVL) functions have also been considered [6]. For binary functions, this approach can be implemented using one of a number of the highly efficient publicly available binary decision diagram (BDD) p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information Processing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010